Teorema 1.1
Kedudukan titik-titik yang berjarak sama yaitu d dari sebuah titik P adalah sebuah lingkaran berpusat di titik P dengan ukuran panjang jari-jari d
Teorema 1.2
Kedudukan titik-titik yang berjarak sama yaitu d dari sebuah garis l adalah sepasang garis-garis sejajar yang masing-masing berjarak d dari garis l
Teorema 1.3
Kedudukan titik-titik yang berjarak sama (equidistant) dari dua buah titik P dan Q adalah sebuah ruas garis (disebut perpendicular bisector).yang tegak lurus terhadap ruas garis dan membagi menjadi dua bagian sama besar
Teorema 1.4
Kedudukan titik-titik yang berjarak sama dari dua garis yang sejajar yaitu l1dan l2 merupakan sebuah garis diantara keduanya dan sejajar dengan kedua garis tersebut.
Teorema 1.5
Kedudukan titik-titik yang berjarak sama terhadap dua garis yang berpotongan yaitu l1 dan l2, adalaha sepasang ruas garis (disebut bisectors) yang membagi dua sama besar sudut-sudut yang yang dibentuk garis l1 danl2
Teorema 1.6
Kedudukan titik-titik yang berjarak sama dari kedua sisi sebuah sudut adalah sebuah ruas garis yang membagi dua sudut tersebut (bisector of angle)
Teorema 1.7
Kedudukan titik-titik yang berjarak sama dari dua buah lingkaran konsentris (concentric circles) adalah sebuah lingkaran yang konsentris terhadap kedua lingkaran tersebut dan berada tepat di tengah keduanya
Teorema 1.8
Kedudukan titik-titik pada jarak tertentu dari sebuah lingkaran yang memiliki jari-jari lebih panjang dari jarak tersebut merupakan sebuah pasangan lingkaran konsentris, di mana masing-masing kedudukan titik tersebut berada di salah satu sisi lingkaran pada jarak tertentu tersebut.
Teorema 1.9
Kedudukan titik-titik yang berjarak tertentu dari suatu lingkaran berjari-jari kurang dari jarak tersebut merupakan sebuah lingkaran yang berada di luar lingkaran pertama dan saling konsentris.
Tidak ada komentar:
Posting Komentar